
UKIEPC 2019
Summary and solution outlines

Problem Solutions

Auto Accountant
24 correct • solved at: 01:02 by

AmaTRINciana
University of Cambridge

Author: Robin Lee

Overview
● We represent a coin with coords (X,Y)

pair. A coin falls into a slot (U,V) if X≤U
and Y≥V.

● For each coin, find the first slot in the list
that matches and add its index to the
answer.

● Segment trees
● KD trees

Automatic Accountant - Solution
Techniques Algorithm

● Keep a segment tree mapping for one axis:
○ For all slots with thickness >= T,
○ Which one has the lowest index? (min-segment-tree)
○ Initially this tree is empty

● Sort the coins and slots along the other axis
○ Iterate through both in parallel, inserting slots as their trigger

masses become eligible for the current coin.
○ Use the tree to find the slot with the smallest index, out of

those with the right mass range.
● Alternatively, use a KD / quad tree

Ballpark
174 correct • solved at: 00:03 by

Ananas
University of Cambridge

Author: Jim Grimmett

Overview
● Estimate a number to one significant

figure (exactly one nonzero digit).
● The number fits inside a 64-bit integer

○ (c++: int64_t)
○ (java: long)
○ (python: number)

● Logarithms
● Rounding

Ballpark Estimate - Solution
Techniques Algorithm

● If we reduce the number to {x}.{abcdefg} where x is a single-digit
number, we can just round it and add zeroes back on later. We just
need to make sure to keep the extra information after the decimal
point.
○ while (number >= 10) { tens++, number /= 10.0; }
○ number = int(round(number))
○ while (tens > 0) {tens--, number *= 10; }

● Or (since only the first two digits matter):
○ int(round(int(s[0:2]) / 10.0)) * (10**(len(s)-3))

Crooked Dealing
81 correct • solved at: 00:20 by

Treeniceratops
University of Cambridge

Author: Robin Lee

Overview
● Partition some numbers into as many

groups of K as possible,
● But make sure the name number never

shows up in the same partition twice.

● Greedy algorithms
● Priority queues

Crooked Dealing- Solution
Techniques Algorithm

● Use a hashmap (or Python’s Counter class) to get the frequency of
all the cards. It’s always best to try and get rid of the most frequent
card as fast as possible.

● Put the cards into a priority queue ordered by frequency.
● While the queue has enough elements to make a hand:

○ Pop the largest K items from the queue
○ Add the values to the answer
○ Reduce the frequencies by one
○ Reinsert the items and new frequencies into the queue

■ They may not have the same ordering in the queue
afterwards.

● Or, binary search on the answer X, lay the numbers out into a grid
with X columns, and the answer is the columns of the grid.

Dome
122 correct • solved at: 00:11 by

BigBoggerBoys2:ElectricBoogaloo
Dublin City University

Author: Jim Grimmett

Overview
● There are some points in 3D space
● We have a dome sited at the origin
● How big do we have to make the dome to

capture K or more of the points?

● Sorting
● Geometry

Dome Construction- Solution
Techniques Algorithm

● The actual positions of the points don’t matter, just how far they
are from the origin. Map the points to hypot(x,y,z) or
hypot(hypot(x,y),z) if your programming language doesn’t take 3
arguments.

● Now sort them. This will put the closest K distances as the first K
elements of the array!
○ So now you can just print the Kth element.

● Or: binary search on the answer (a very versatile algorithm) and
count how many points match to decide to go lower/higher.

Estate Agent
6 correct • solved at: 01:15 by

Treeniceratops
University of Cambridge

Author:
Bjarki Ágúst Guðmundsson

Overview
● Some people want to buy each others’

houses. We want to earn money.
● What’s the largest possible sum of

transactions we can make?

● Bipartite graphs
● Hungarian algorithm

Estate Agent - Solution
Techniques Algorithm

● Make a graph where people are vertices, and so are houses. Make
an edge between a person and a house if they want to buy it and
assign the offer value as the weight.
○ Crucially, also make an edge between a person and their own

house with a zero weight. This is the default case.
● Now we have another bipartite matching problem.

○ The graph is weighted, so we need to use the Hungarian
algorithm or a minimum-cost-maximum-flow (MCMF)
algorithm.

○ Plug in and play after setting up the appropriate graph.

Feeding Seals
99 correct • solved at: 00:07 by

Treevial
University of Cambridge

Author: Ian Pratt-Hartmann

Overview

● We can give a person 2 buckets if their
combined weight is less than or equal to
some constant C.
○ But if we can’t do that, or don’t

want to, we can give them just one
bucket.

● To carry N buckets of various weights,
how many people do we need?

● Sorting
● Two pointers

Feeding Seals - Solution
Techniques Algorithm

● This is a class of problem called “two pointers”. If we sort all of the
weights, we can solve it with a kind of recursive argument:
○ If anything is going to be paired up, it makes sense to use the

smallest item as part of a pair.
○ We should also use as big an item as possible with the

smallest item.
■ If this can be the largest item, that’s the best option.

We throw both the start and end of the array away.
■ Otherwise, we can never pair the largest item, so we

throw it away.
○ Use two pointers into the ends of the array (or a deque) to

implement this efficiently.

Grand Central Station
7 correct • solved at: 02:19 by

Treeniceratops
University of Cambridge

Author: Robin Lee

Overview
● We have an unrooted tree.
● We have some anonymous nodes in the

tree connected to each other.
● How many of the nodes are functionally

the same (isomorphic)?

● Tree centroids
● Isomorphism
● Hashing

Grand Central Station - Solution
Techniques Algorithm

● We need a canonical label for each node of the tree.
○ One way is to make a hash for a node, by taking the hashes

of all the other nodes around it and hashing them into one
super-hash

○ Sounds impossible but can be done by excluding one
neighbour node at a time.

● Another way is to root the tree at its centroid- found by taking the
longest path in the tree and looking for the middle node(s) in this
path.
○ Then each node can have a label, and nodes with the same

list of child labels can have the same label.
○ If a node has two child labels, merge them together and

count them. Time O(N).

Hat Stand
27 correct • solved at: 00:36 by

Treevial
University of Cambridge

Author: Robin Lee

Overview
● We have a unique kind of cache for hats.

The last-used item is put in the place of
the next-used item.

● What is the best way of optimising this
cache?

● Simulation
● Sorting

Hat Stand - Solution
Techniques Algorithm

● Let’s say we already picked an ordering of the hats and simulated
it. What would the cost be?
○ For each starting hook, count the number of accesses and

multiply by its index.
○ For a given hat: the number of accesses for the hook the hat

starts on is constant, but we can change the index.
○ Let’s count the number of accesses in a “default”

permutation, and reorder starting from the most accessed
items to reduce cost.

● Key insight is to forget about the ordering to begin, and only apply
it when it starts to matter.

Integral Pyramid
78 correct • solved at: 00:10 by

When all else fails take a nap
University of Cambridge

Author: Robin Lee

Overview
● A pyramid is made by adding numbers

on lower rows together.
● We want to make a given number at the

top. What should the numbers at the
bottom be?

● Dynamic programming
● Cheekiness

Integral Pyramid - Solution
Techniques Algorithm

● Start by just putting all 1s in the bottom row.
○ This gives a sum of 2^(n-1) at the pinnacle.

● Now, because there’s only one way for the first and last items to
“contribute” to the final score, we can make up the difference in
column 0 by adding to it.
○ As long as we make sure this addition is non-negative. If not,

the test case is impossible.
● Nicer ways are possible too, but why bother?

Jammed Gym
45 correct • solved at: 00:25 by

Kvalitní Slovenskí Programátori
University of Cambridge

Author: Robin Lee

Overview
● Find a shortest path where each node

has multiple locations.

● Dijkstra’s algorithm
● Dynamic programming

Jammed Gym - Solution
Techniques Algorithm

● Really, nodes of the same kind are not the same, we just need to
go to any of them at some time T.

● So we can make a table of cost_to_visit[T][NodeId] and only fill it in
for the relevant kinds of node at time T.
○ Iterate through T in increasing order and do an all-pairs

comparison to find if:
■ Station at T is valid to leave from
■ Station at T+1 is valid to go to.

● Read off the minimum number in row T of the matrix at the end.

Knocked Ink
2 correct • solved at: 04:13 by

Treeniceratops
University of Cambridge

Author: Robin Lee

Overview
● Ink is spreading across a page in circles.
● Some ink blots start earlier, others later.
● How long until the total area is A?

● Circle intersection
● Line integrals
● Green’s theorem
● Binary search
● Pain tolerance

Knocked Ink - Solution
Techniques Algorithm

● The spreading out of ink is the easy bit- area covered only
increases, so we can run binary search (100+ iterations is plenty).

● Now we have to check the area of union of the blots. This is not as
easy as it sounds.
○ Some areas are just covered by one or two blots, other areas

can be covered by dozens of blots with circle edges all over
the place.

○ If we can describe the intersecting circles as one continuous
polyline, our job is much easier- when we can describe a
curve mathematically, we can probably integrate it
mathematically too.

● Let’s start by figuring out which arcs are on the border

● Circle intersection
● Line integrals
● Green’s theorem
● Binary search
● Pain tolerance

Knocked Ink - Solution
Techniques Algorithm

● Circle intersection
● Line integrals
● Green’s theorem
● Binary search
● Pain tolerance

Knocked Ink - Solution
Techniques Algorithm

But… Why not use a spatial data structure?

● Let’s take a look.

Low Effort League
12 correct • solved at: 01:05 by

?‽!
University of Cambridge

Author: Robin Lee

Overview
● How many games do you have to

rig/modify to win a tournament?
● Specifically, how do you minimise total

cost to win if cost to win one game is
the square of the difference in skill?

● Dynamic programming

Low Effort League - Solution
Techniques Algorithm

● Similar to Jammed Gym- dynamic programming
○ Cost to have team X in round R = cost[X][R]. This can be

calculated by finding all teams T in the adjacent bracket in
round R and comparing against cost[T][R-1].

○ There are X*R cells = R*2^R cells. This is a lot, but not too
many to make it slow.

○ Here, just read off the value of cost[1][R] for the answer.

Mosaic
8 correct • solved at: 01:47 by

Treeniceratops
University of Cambridge

Author: Robin Lee

Overview
● Remove some rows from a rectangular

array to make every value in the array
show up equally often.

● Meet in the middle
● Hashing

Mosaic - Solution
Techniques Algorithm

● Meet in the middle- break 2^40 worth of brute force into 2^20 x 2
● Find two “half solutions” which cancel each other out, for example

2xA+1xB in one, and 2xA+3xB in the other.
● This is fast enough if the arrays are small,

○ But the arrays are very large
○ So make a hash function that still supports adding together

and subtracting values in aggregate without recalculating the
whole thing
■ For safety, make several such hash functions in case

any one is weak, and bundle them together.

Questions?
Or comments?

http://domjudge.bath.ac.uk/
Final Standings

http://domjudge.bath.ac.uk/

